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Kinetics of Random Graphs

olgile O O
0“ ©o—o % 0o— @ — - —>
1 1

N O @ 2N

® |nitial state: NV isolated nodes

® Dynamical linking

|. Pick 2 nodes at random

2. Connect the 2 nodes with a link
1

2N
® Fach node experiences one linking event per unit time

Flory, Stockmeyer 43
Erdos, Renyi 60

3. Augment time t —



Aggregation Process

@
Cluster = a connected graph component .\Z.

Aggregation rate = product of cluster sizes ..

Kij =1

Master equation
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Divergent second moment reveals percolation transition
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Cluster Phase ( t<I)
° Qf\. ..\. :/.

Microscopic clusters, tree structure
Cluster size distribution contains entire mass
o0
M(t) — Z kck =1
k=1

Typical cluster size diverges near percolation point

ky ~ (1 —1t)72

Critical size distribution has power law tail
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Giant Component Phase ( t>1 )

A

Macroscopic component exist, complex structure

Cluster size distribution contains fraction of mass

M(t):chk:1—g
k=1

Giant component accounts for “missing” mass
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Random Regular Graphs

All nodes have identical degree

Motivation: rings of magnetic particles

Consider simplest case: rings; all nodes have degree 2
Consider directed links (without loss of generality)

In a system of N nodes, there are exactly N links

Number of links is conserved! Kun O]



Redirection Process
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® Dynamical redirection

|. Pick 2 nodes at random
2. Connect 2 nodes by redirecting 2 associated links

3. Augment time ¢ — ¢

2N
® A node experiences one redirection event per unit time

® |nitial condition: isolated nodes, each has a self-link
HUUWHHE L

Redirection process maintains ring topology



Aggregation-Fragmentation Process

e Aggregation:inter-ring redirection

|dentical to random graph process
1,] —> 1+ 7 with Ki; =1j

¢ Fragmentation:intra-ring redirection

Fragmentation rate depends on system size!
(Al

P45 —> 1,7 with F;; = ~

® TJotal fragmentation rate is quadratic

k(k— 1)
Fe= ) Fy="%y
itj=Fk

Reversible process




Rate Equations

Size distribution satisfies

dr 1 k(k—1
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z—I—J_ _j>k

Rate equation includes explicit dependence on N

. finite iant
Perturbation theory  rings  rings
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Fragmentation irrelevant for finite rings Fj, ~ N
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Recover random graph equation




Finite Rings Phase ( t<1 )
All rings are finite in size

M(t):iszl

Size distribution

filt) = 7 (kt)F e

k- k!
Second moment diverges in finite time M, =) k*f;
dM &
dtQ —M? — My=(1-1t)"

Critical size distribution

fe(1) =~ \/%7155/2

ldentical behavior to good-old random graph



Critical Size Distribution

Simulation results
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Excellent agreement between theory and simulation



Giant Rings Phase ( t>1 )

Finite rings contain only a fraction of g all mass

Zkszl—

“Missing Mass” 1-g must be found in giant rings

gzl—e_t

Expect giant, macroscopic rings

Very fast aggregation and fragmentation processes

:ZCZ

Fragmentation comparable to aggregation
No longer negligible



Distribution of giant rings

® Quantify giant rings by normalized size ¢ = Ll

® Average number of giant rings of normalized size /¢

o(t) = /O " wea s

® Rate equation

gain= (/2 agg loss= g — ¢
1 t
\QG’Q/ / ds s(l —s)G(s,t)G(L — s,t) —L(g—0)G(L,1)
frag loss= ¢/2

/%K g fraggain=g—¢ 1
—I—/ dssG(s t) — —EZG(E t)

® Quasi steady-state

’

(—t 1< g(t),

Gl6,1) = - 0> g(t).
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Universal distribution, span grows with time



Average Number of Giant Rings

Simulation results
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Comments

® Rate equation for average number of giant rings

\&g/ 1
]\V \&\ / dss(f — s)G(s,t)G(£ — s,t) —L(g — 0)G(L,1)
—I—/ ds s G(s,t) — —EQG(Z t)

® Practically closed equatlon coupling to finite rings
only through total mass g(t)

® Steady flux N dg/dt from finite rings to giant rings
® Number of giant rings is not proportional to V!
Ny, ~InN

Number of microscopic rings proportional to N
Number of macroscopic rings logarithmic in N



Total Number of Giant Rings

Simulation results
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Law of large numbers



Multiple Coexisting Giant Rings
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Total mass of giant rings is a deterministic quantity
Mass of an individual giant ring is a stochastic quantity!
Giant rings break and recombine very rapidly



Limiting Distribution

® Steady-state size distribution satisfies

O:% Z Kz’jcz’cj_CkZKijj+ZijCj+k_%Ck Z Fij

1+=k =1

=1

Detailed balance condition

Kij cicj = Fij Ciyy

Substitute aggregation and fragmentation rates

K =1)

Steady-state solution

1
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Final Distribution

Simulation results
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Shuffling Algorithm

123456 - 153426 — 154326 — - -

Initial configuration: N ordered integers
Pairwise shuffling:

|. Pick 2 numbers at random
2. Exchange positions
3. Augment time ¢t — ¢

2N
Each integer is shuffled once per unit time

Efficient algorithm, computational cost is O(V)

Isomorphic to dynamical regular random graph!



Cycles and Permutations

S0 G-

(123)(456) — (156423) (156423) — (123) 456

® Cycle structure of a permutation
134265 = (1)(234)(56)

o Aggregation:inter-cycle shuffling

Ki;; . : : ..
,] —> 1+ with Ki; =17
¢ Fragmentation:intra-cycle shuffling

Z‘l‘]%ﬂf&,] with Fz’j: TJ

N
ldentical aggregation and fragmentation rates



Implications to Shuffling

® N pairwise shuffles generate a giant cycle
® Size of emergent giant cycle is N*°

® NIn N pairwise shuffles generate random order

Golomb 61
Flatto 85
Diaconis 86



Summary

Kinetic formulation of a regular randm graph
Equivalent to: (i) aggregation-fragmentation (ii) shuffling
Finite rings phase: fragmentation is irrelevant
Giant rings phase

- Multiple giant rings coexist

- Number of giant rings fluctuates

- lotal mass is a deterministic quantity

- Very rapid evolution



